Hydromorphology of rivers and floodplains - What is at stake and how does REFORM contribute?

REFORM $4^{\text {th }}$ national stakeholder workshop "Elementi di novità a supporto dell'attuazione della DQA"

Tom Buijse Deltares Utrecht, the Netherlands E: tom.buijse@deltares.nl

Hydromorphological pressures in European surface waters

- 127000 surface water bodies
- 82\% rivers
- 15\% lakes
- 3\% coastal and transitional waters
- HYMO pressures affecting ..
- 40\% river and transitional waters
- 30\% lakes
- Causes
- Hydropower
- Navigation
- Agriculture
- Flood protection
- Urban development

Source: EEA report 8/2012 European waters - assessment of status and pressures

How do we share expertise on river restoration?

 /wwwstreamlifeorguk/

Examples of EU funded River River restoration projects

E LIFE	Grand Total	
20	1	21
26	1	27
17	114	131
4	1	5
14	55	69
81	172	253

www.wwf.se/flodparimussla

http://wwwlifewachauat/

http://wwwhammde/lifelipp eauehtml 3

REstoring rivers FOR effective catchment Management

Tom Buijse NL
Roy Brouwer NL Ian Cowx UK Harm Duel NL Nikolai Friberg DK/N Angela Gurnell UK Daniel Hering GE Eleftheria Kampa GE Erik Mosselman NL Susanne Muhar AU Matthew O'Hare UK Tomasz Okruszko PL Massimo Rinaldi IT Jan Vermaat NL Christian Wolter GE

REFORM $4^{\text {th }}$ national stakeholder workshop
"Elementi di novità a supporto dell'attuazione della DQA"
November 2011 - October 2015

Rome, 10 September 2015

Partners

26 partners from 15 European countries

No Name	Short name Country		
1Stichting Deltares	Deltares	Netherlands	
2Stichting Dienst Landbouwkundig Onderzoek	Alterra	Netherlands	
3Aarhus University	AU-NERI	Denmark	
4Universitaet fuer Bodenkultur Wien	BOKU	Austria	
5Institut National de Recherche en Sciences et des	IRSTEA	France	
Technologies pour l'Environnement et I'Agriculture			
6Institutul National de Cercetare-Dezvoltare Delta Dunarii	DDNI	Romania	
7Swiss Federal Institute of Aquatic Science and Technology	EAWAG	Switzerland	
8Ecologic Institut Gemeinnützige Gmbh	Ecologic	Germany	
9Forschungsverbund Berlin E.V.	FVB.IGB	Germany	
10Joint Research Centre- European Commission	JRC	Belgium	
11Masaryk University	MU	Czech Republic	
12Natural Environment Research Council - Centre for Ecology	NERC	United Kingdom	
and Hydrology			
13Queen Mary University of London	QMUL	United Kingdom	
14Swedish University of Agricultural Sciences	SLU	Sweden	
15Finnish Environment Institute	SYKE	Finland	
16Universitaet Duisburg-Essen	UDE	Germany	
17University of Hull	UHULL	United Kingdom	
18Universita Degli Studi Di Firenze	UNIFI	Italy	
19Universidad Politecnica de Madrid	UPM	Spain	
21Warsaw University of Life Sciences	WULS	Poland	
22Centro de Estudios y Experimentacion de Obras Publicas	CEDEX	Spain	
23Dienst Landelijk Gebied	DLG	Netherlands	
24Environment Agency	EA	United Kingdom	
25Istituto Superiore per la Protezione e la Ricerca Ambientale	ISPRA	Italy	
26Norsk Institutt for Vannforskning		NIVA	Norway
27Stichting VU-VUmc	VU-Vumc	Netherlands	

Objectives of REFORM

APPLICATION

1. Select indicators for cost-effective monitoring
2. Improve tools and guidelines for restoration

RESEARCH

1. Review existing information on river degradation and restoration
2. Develop a process-based hydromorphological framework
3. Understand how multiple stress constrains restoration
4. Assess the importance of scaling on the effectiveness of restoration
5. Develop instruments for risk and benefit analysis to support successful restoration

DISSEMINATION

1. Enlarge appreciation for the benefits of restoration

Cooperation with ...

Lourdes Alvarellos, Gary Brierley, Johan Kling, Margaret Palmer, Hervé Piégay, Peter Pollard, Ursula

Schmedtje, Bas van der Wal
make use of earlier research projects (e.g. REBECCA, WISER, FORECASTER)
RESTORE (LIFE+ Information \& Communication)

European Centre for River Restoration (ECRR)
WFD Implementation: common implementation strategy (CIS)

Advisory Board of REFORM

Connecting to new research projects (e.g. MARS)

EVENTS

- European stakeholder workshop - Brussels February 2013
- National stakeholder workshops
- Zutphen, the Netherlands November 2013
- York, UK May 2014
- Seville, Spain June 2014
- Rome, Italy September 2015
- Thematic workshops
- Role of groundwater for river ecosystems - Biebrza, Poland September 2014
- Linking E-flows to sediment dynamics - Rome, Italy September 2015
- ECOSTAT Hydromorphology - Oslo, Norway October 2015
- Summer school - Wageningen, Netherlands June 2015
- Scientific conference - Wageningen, Netherlands June 2015

Take the catchment perspective

Awareness to relevant spatial and temporal aspects beyond river restoration project boundaries and project life span

Grabowski, R.C., N. Surian and A.M. Gurnell (2014) Characterizing geomorphological change to support sustainable river restoration and management. WIREs Water. doi/10.1002/wat2.1037
Gurnell, A. et al (2014)Multi-scale framework and indicators of hydromorphological

REFORM
REstoring rivers FOR effective catchment Management

Connecting biota to multiple scales

Garcia de Jalon, D., Wolter, C. et al. (20140 Influence of natural hydromorphological dynamics on biota and ecosystem functioning. REFORM deliverable 2.2 part 2

Consider physical processes

most applied hydromorphological methods do this insufficiently

Rinaldi, M., B. Belletti et al. (2013) Review on ecohydromorphological methods. REFORM deliverable 1.1
Belletti, B., Rinaldi, M., Buijse, A.D., Gurnell, A.M., Mosselman, E (2015) A review of assessment methods for river hydromorphology. Environmental Earth Sciences 73:2079-2100

	Categories of methods					
	1. Physical habitat	2. Riparian habitat	3. Morphologi cal assessmen t	4. Hydrologic al assessmen t	5. Fish continuity	TOT
Europe	40	5	13	4	13	75
Austria	6				1	7
Belgium	2				2	4
Czech Republic	1		1			2
Denmark	5					5
England \& Wales	4		4		2	10
France	3		2		2	7
Germany	5				1	6
Ireland	1		1			2
d Italy	2	1	1	1	1	6
Netherlands	2				1	3
O Poland	3		1			4
Portugal	1					1
Scotland			2	1	1	4
Slovakia	1					1
Slovenia	1					1
Spain	2	4	3	2	2	13
Sweden	2					2
US	24	5	8	4	5	46
Australia	4	2	1			7
Switzerlan d	1					1
Others*	4	2	2	2	2	12

*South Africa, Canada/Quebec, China, New Zealand, Ukraine

Beware of gardening, don't restore the past, rivers respond

Conceptual DIAGNOSIS pressure - process - impact framework

Large Dam \& Reservoir

- 18 most significant HyMo pressures reviewed that impact aquatic biota
- Diagnosis helps to identify appropriate restoration measures

Garcia de Jalon, D. et al. (2013) Review on effects of pressures on hydromorphological variables and ecologically relevant processes. REFORM deliverable 1.2
Wolter, C. et al. (2013) Review on ecological responses to hydromorphological degradation and restoration. REFORM deliverable 1.3

Vegetation as ecosystem engineer for river restoration is too often insufficiently taken into account

Gurnell, A. et al. D2.2 (2014) Influence of natural hydromorphological dynamics on biota and ecosystem functioning. REFORM deliverable 2.2 part 1
Gurnell, A.M. (2014) Plants as river system engineers. Earth Surface Processes and

REFORM enhanced insights in the relation between HYMO and biota

- Fish and macrophytes appear better suited to assess HyMo degradation than diatoms and benthic invertebrates
- Terrestrial and semi-aquatic species benefit most from restoration
- Restoration resulted in a higher number of individuals but few new species
- Restoration affected specific species or traits rather than increasing the mere total number of species

Friberg, N. (2014) Impacts and indicators of change in lotic ecosystems. WIREs Water 2014 doi/10.1002/wat2.1040
Friberg, N., M. O'Hare \& A.M. Poulsen [eds.] (2013) Impacts of hydromorphological degradation
and disturbed sediment dynamics on ecological status. REFORM deliverable 3.1
O'Hare, M. et al. (2015) Understanding biological responses to degraded hydromorphology sediment dynamics and multiple stress. REFORM deliverable 3.2
Verdonschot, P. et al. (2015) Evaluation of candidate indicators for case studies including
uncertainty. REFORM deliverable 3.3

Standardised sampling of restored reaches across mid-sized rivers in Western, Central and Northern Europe

Mid-sized lowlands rivers

Mid-sized mountain rivers

Restoration matters, but larger projects did not perform better then small ones

Large restoration project R1
Small restoration project R2

Kail, J. \& N. Angelopoulos et al. (2014) Evaluation offakydromorphological restoration from existing data. REFORM deliverable 4.2
Kail, J., A. Lorenz \& D. Hering [eds.] (2014) Hydromorphological and eqcological ©
Difference in Bray-Curtis dissimilarity (percentage points) survey of the restoration case studies. REFORM deliverable 4.3
Vermaat, J. et al. (2015) Socio-economic survey of the restoration case studies.
REFORM deliverable 4.4

Existing EU Directives provide a too limited legislative framework for riparian zones and floodplains

- Hydromorphological impacts can take years to fully manifest themselves
- Riparian and floodplain ecosystems are not subject to extensive monitoring
- Plant diversity alone cannot be considered a valid and exhaustive indicator to assess the health of a river system and its functioning
- A generic framework is recommended for assessing the impact on floodplain and riparian ecosystems

Baattrup-Pedersen, A., M. O'Hare et al. (2015) Guidance on how to identify impacts of hydromorphological degradation on riparian ecosystems. REFORM deliverable 3.4

Good planning and management

Restoration projects should have well-defined success criteria

-Nine expectations describe abiotic responses for hydrology, geomorphology, and water quality.
-Five expectations describe changes in plant communities in the river channel and floodplain
-Six expectations describe invertebrate and amphibian and reptile communities.
-Five expectations describe anticipated changes in fish and bird communities.

Good planning and management

Application of existing management tools can substantially enhance the efficiency and effectiveness of restoration

Cost data are too scarce hampering cost-benefit analysis

Measure	Germany	Spain	UK	Netherlands
Flow Quantity (1)	1%	0%	0%	0%
Sediment Flow Quantity (2)	4%	$\mathbf{2 9 \%}$	5%	$\mathbf{2 3 \%}$
Flow Dynamics (3)	1%	0%	0%	0%
Longitudinal Connectivity (4)	$\mathbf{2 1 \%}$	$\mathbf{3 2 \%}$	7%	$\mathbf{5 5 \%}$
Depth and Width Variation (5)	13%	0%	$\mathbf{5 3 \%}$	9%
In-channel Structure and Substrate (6)	$\mathbf{2 7 \%}$	7%	$\mathbf{1 9 \%}$	9%
Riparian Zone (7)	4%	11%	7%	5%
Floodplains/Lateral Connectivity (8)	$\mathbf{2 9 \%}$	$\mathbf{2 1 \%}$	9%	0%
Total of Measures	453	228	$45 / 55$	30

Conclusions \& Recommendations

- Incorporating cost information into decision making is a prerequisite to increase river restoration efficiency -> more effort needed
- Difficult to determine ecosystem benefits and services from restoration projects both individually and as a whole

Cost-Benefit Analysis aids in prioritizing restoration

 measures and plans- Manuals and guidelines for the economic analysis of river restoration projects do not yet exist
- Important guidelines on the economics of water management in general offer
- In Europe, prioritization of restoration measures in the context of the WFD based on CEA/CBA is still very limited

Brouwer, R., H. Gerdes, P. Reichert et al. (2015) Valuing the ecosystem services provided by European river corridors - an analytical framework. REFORM deliverable 5.2

REFDRM

website: WWW.REFORMRIVERS.EU

REFORM $4^{\text {th }}$ national stakeholder workshop
"Elementi di novità a supporto dell'attuazione della DQA"
Rome, 10 September 2015

REFORM
REstoring rivers FOR effective catchment Management

Summer school "Restoring Regulated Streams linking Theory and Practice"

http://www.reformrivers.eu/events/summer-school

Guidance and tools - REFORM WIKI

How does my river work?

Multiscale hierarchical framework for hydromorphological river characterization

How does my river work?

Insights in interactions of water and

 sediment with vegetation

REFORM

REstoring rivers FOR effective catchment Management

How does my river work?

Assessment of ecosystem services

How does my river work?

Numerical models: fact sheets

What's wrong?

Assessment and monitoring of hydromorphological conditions

What's wrong?

Biological quality indicators to detect HyMo impacts

REFORM $4^{\text {th }}$ national stakeholder workshop
"Elementi di novità a supporto dell’attuazione della DQA"

How can we improve?

Planning at catchment scale

1. River characterization
2. River condition
3. River restoration potential
4. Programme of measures
5. Project identification

Planning of individual projects

PDCA cycle

How can we improve?

REFORM river restoration wiki

- Main page
- What's in this wiki?

How does my

 river work?- How does my river work?
- Introduction to
characterisation
- Hydromorphology
- Role of vegetation
- Ecosystem services
- Nodela

What's wrong?

- What's wrong?
- Hydromorphological

Quality

- Biological Quality
- Pressures
- Hydromorphologica assessment tools

How can we improve?

- How can we improve?
- Restoration planning
- Measures
- Case studies
- Planning tools

Extra

- Multi-lingual glossary
- Mechods and tools
- EU Directives
- Database
- Related Sites
- The RFFORM nrniect

Category:Measures
Aims \& Measures

River restoration and rehabilitation projects are implemented to achieve given objectives which are tranalated in the physical environment into Aims for improving hydromorphological and/or ecological conditions in the river system. The methods or activities used to achieve these Aims are usually called Measures.

For example:

- Aims Longitudinal connectivity improvement

Measure: Installation of a fish pass
-

In this web-based tool information from sixty restoration and rehabilitation measures have been compiled from the River Basin Management Plansis of the countries represented in the FORECASTER consortium and information provided by the Environment Agency of England and Wales[21,
The measures have been organized according to their aims into the 9 measure groups indicated below as Subcategories. Click in the subcategory to see the measures contained in it. The complete list of measures is presented at the bottom of the page under Pages in category "Measures"

References:

1. I Environmental Issues, Dams and Fish micration. Neste River, France 16
2. IRoyal Haskoning. 2007. Hydromorphology and the Water Framework Directive, Work package 6 of the Environment Agency WFD Hydromorphology Project

Subcategories
This category has only the following subcategory.

0

- 1. Water flow quantity improvement
- 2. Sediment flow quantity improvement
- 3. Fow dynamics improvement

0 cont.

* 4. Longrudinal connectivity improvement
- 5. River bed depth and width yariation improvement
- 06, In-channel strusture and substrate improvement

0 cont.

- 7. Riparian zone improvement
- 8. Floodolains/off-channel/latera
connectivity habitars improvement
- 9. Other aims to improve hydrological or morphological senditiens

How can we improve?

1. PDCA cycle: Plan - Do - Check - Act
2. DPSIR framework: Driver - Pressures - State - Impact Response
3. WISE conflict and resolution matrices
4. Decision matrix
5. Benchmarks and endpoints
6. Setting SMART project objectives
7. Problem tree analysis and tree of objectives
8. Logical framework approach
9. Risk and uncertainty analysis
10. Multiple-criteria decision analysis (MCDA)
11. Monitoring design
12. Cost-benefit analysis (CBA)
13. Cost-effectiveness analysis (CEA)

REFORM

wiki.reformrivers.eu

How does my

 river work?- How does my river work?
characterisation
- Hydromorphology
- Role of vegetation
- Ecosystem services

What's wrong?

- What's wrong?
- Hydromorphologica

Quality

- Biologicar quantry
- Pressures
- Hydromorphologica

How can we improve?

- How can we improve?
- Restoration planning
- Case studies
- Planning tools

What's wrong?
Evaluation of status

How can we improve?
Programme of measures
Multi-lingual glossary
Methods and tools

Thank you for your attention

Acknowledgements

REFORM receives funding from the European Union's Seventh Programme for research, technological development and demonstration under Grant Agreement No. 282656

COLLABORATIVE PROJECT LARGE SCALE INTEGRATING PROJECT

ENV.2011.2.1.2-1
HYDROMORPHOLOGY AND ECOLOGICAL OBJECTIVES OF WFD
GRANT NO. 282656

REFORM

REStoring rivers FOR effective catchment Management

Our project website is our display window

 wWW.reformrivers.eu

